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a b s t r a c t

A suitable feature representation can faithfully preserve the intrinsic structure of data. However,
traditional dimensionality reduction (DR) methods commonly use the original input features to define
the intrinsic structure, whichmakes the estimated intrinsic structure unreliable since redundant or noisy
features may exist in the original input features. Thus a dilemma is that (1) one needs the most suitable
feature representation to define the intrinsic structure of data and (2) one should use the proper intrinsic
structure of data to perform feature extraction. To address the problem, in this paperwe propose a unified
learning framework to simultaneously obtain the optimal feature representation and intrinsic structure of
data. The structure is learned from the results of feature learning, and the features are learned to preserve
the refined structure of data. By leveraging the interactions between the process of determining the most
suitable feature representation and intrinsic structure of data, we can capture accurate structure and
obtain the optimal feature representation of data. Experimental results demonstrate that our method
outperforms state-of-the-art methods in DR and subspace clustering. The code of the proposed method
is available at ‘‘http://www.yongxu.org/lunwen.html ’’.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In many computer vision and pattern recognition applications,
high-dimensional data often contain some redundant or noisy
features. The performance of algorithm may drop exponentially
as the dimensionality of data increases (Elhamifar & Vidal,
2013; Lai, Xu, Yang, Tang, & Zhang, 2013; Mardani, Mateos, &
Giannakis, 2015; Wang, Nie, Yang, Gao, & Yao, 2015). Therefore,
it is essential to seek a low-dimensional representation for
the original high-dimensional data (Fang et al., 2014; Jing-Yan
Wang & Gao, 2015). Principal component analysis (PCA) is an
unsupervised dimensionality reduction (DR) method which maps
high dimensional data into a low-dimensional subspace by seeking
the direction ofmaximumvariance for optimal data reconstruction
(Fan et al., 2014; Li, Pang, & Yuan, 2010). Locally linear embedding
(LLE) (Roweis & Saul, 2010) and Laplacian eigenmap (LE) (Mikhail
& Niyogi, 2001) were recently proposed to discover the intrinsic
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manifold structure of data. However, LE cannot deal with new
data points, which is commonly referred to as the ‘‘out-of-sample’’
problem. Locality preserving projection (LPP) method can address
this problem because the obtained projection matrix can directly
deal with new data (Niyogi, 2014). Local learning projection (LLP)
was also proposed to address the same problem (Wu, Yu, Yu,
& Scholkopf, 2007). Neighborhood preserving embedding (NPE)
was proposed to preserve the local neighborhood structure on
the manifold (He, Cai, Yan, & Zhang, 2005). Recently, many neural
networks methods were proposed to perform data representation
(Huang, 1999; Huang & Du, 2008; Huang & Jiang, 2012; Lemme,
Reinhart, & Steil, 2012).

Semi-supervised learning (SSL) can utilize both limited labeled
data and abundant yet unlabeled data to seek a suitable data
representation for boosting algorithmic performance. Graph based
SSL (G-SSL) methods have been successfully applied in capturing
desired structures of data. In addition, the Hessian regularization
can also be viewed as a graph embedding to explore the local
geometry structure of data for boosting the performance of SSL
(Liu, Liu, Tao, Wang, & Lu, 2015; Tao, Jin, Liu, & Li, 2013; Wang
& Huang, 2009; Wang, Huang, & Xu, 2010). The performance of
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G-SSL method heavily relies on the graph construction process.
Thus, lots of researches focus on the problem of constructing a
suitable graph. For example, ℓ1 graph (Yan & Wang, 2009), local
linear reconstruction graph proposed in LLE (LLE graph) (Roweis
& Saul, 2010), sparse probability graph (SPG) (He, Zheng, Hu, &
Kong, 2011) (SPG in essence is a sparse coding problem with
the non-negative constraint) and low-rank representation graph
(LRR graph) (Liu, Lin, & Yu, 2010) have been proposed. Although
these methods obtain empirical success, there are still some
disadvantages. For example, reconstruction and minimization in
traditional LLE are only processed within the sample neighbors
defined by some conventional graphs construction methods such
as k nearest neighbor (kNN-graph) or ϵ graph. Such procedure
cannot provide an adaptive neighbor for the algorithm. kNN-graph
and ϵ graph have the similar problem. Differing from conventional
graph construction methods, ℓ1 graph is sparse. It is well known
that ℓ1 graph is only to find the sparse representation for data
reconstruction. However, the best data reconstruction does not
mean the best discriminating power (Patel, Nguyen, & Vidal, 2013;
Zhang, Zhou, & Chang, 2012). The LRR graph is usually dense,which
is undesirable for G-SSL. Moreover, LRR allows the data to ‘‘cancel
each other out’’ by subtraction. In other words, the weight of the
graph in LRR may be negative, which lacks physical interpretation
for the visual data. What is more, almost all these methods
construct the graph structure on the original high-dimensional
feature space, which is unnecessary to be best for characterizing
the pairwise data relationship due to the fact that some redundant
or noisy features may exist in the original feature representation.

In the unsupervised scenario, one needs the most suitable
feature representation to define the structure of data and
simultaneously one needs the data structure to perform feature
extraction. However, both of them are not known in advance.
Facing with such dilemma, in this paper we propose a novel
orthogonal self-guided similarity preserving projection (OSSPP)
method which can simultaneously learn them. Specifically,
the similarity structure information of data is encoded by
reconstruction coefficients of the projected data, and at the same
time the projected data are required to respect the similarity
structure via the similarity preserving regularization term. By
leveraging the interactions between these two essential tasks,
we are able to learn the best of them. In other words, the
projection matrix and reconstruction coefficient matrix can be
mutually improved during the process of learning. Fig. 1 presents
an overview of our proposed OSSPP. We explicitly enforce the
reconstruction coefficient matrix to be non-negative so that
the reconstruction coefficient matrix can be directly used as
the graph weights. Although we do not explicitly impose the
sparsity constraint on the reconstruction coefficients, the problem
to determine the reconstruction coefficient matrix is naturally
converted to a weighted non-negative sparse coding problem.
In this way, OSSPP allows the reconstruction coefficients matrix
to be sparsity, datum-adaptive neighborhood, which is useful to
construct a sparse graph for subspace clustering. It is obvious that
OSSPP is somewhat similar with sparsity preserving projections
(SPP) (Qiao, Chen, & Tan, 2010) without any explicit sparsity
constraint. Thus, the projection learned by OSSPP contains natural
discriminative information. We conduct extensive experiments on
public data sets forDRandSSL tasks. Please note that thiswork is an
extension to previous conference publication (Fang, Xu, Zhang, Lai,
& Shen, 2015). This work adds the application of semi-supervised
subspace clustering and analysis of the difference between our
method and related methods.

The remainder of this paper is organized as follows: in Section 2,
the related work is presented. Section 3 describes OSSPP method.
Section 4presents the experimental results. Finally, Section 5offers
our conclusion.
Fig. 1. Overview of OSSPP. In our framework, P projects the original data into a
desirable low-dimensional subspace for learning Z and at the same time Z is also
used to refine P . Doing so, they can be mutually improved. Finally, we use P andW
to perform DR and subspace clustering, respectively.

2. Related work

Since our work is based on latent space sparse subspace clus-
tering (LS3C) (Patel et al., 2013), we briefly review its formulations
for the sake of completeness. Let X = [x1, x2, . . . , xn] ∈ ℜ

m×n be a
collection of n training samples {xi ∈ ℜ

m
}
n
i=1 drawn from a union

c of linear subspaces Ω1 ∪ Ω2 ∪ · · · ∪ Ωc of dimensions {dℓ}
c
ℓ=1 in

ℜ
m. Let Xi ∈ ℜ

m×nℓ be a sub-matrix of X of rank dℓ with nℓ > dℓ

training samples that lie in Ωℓ with n1 + n2 + · · · + nc = n. Each
sample in X can be well represented by a linear combination of at
most dℓ samples in X .

xi = Xzi, zii = 0, ∥zi∥0 ≤ dℓ (1)

where zi is the reconstruction coefficient vector. Considering
all training samples (matrix form), we can rewrite the above
formulation as

min ∥Z∥1, s.t. X = XZ, diag(Z) = 0 (2)

where ∥Z∥1 =
n

i=1
n

j=1 |Zij| is the ℓ1-norm of representation
coefficient matrix Z .

In real-world applications, the data are often contaminated by
some arbitrary noise E, i.e., X = XZ + E, we may reformulate
problem (2) as

min
Z

∥Z∥1 + γ ∥X − XZ∥
2
F , s.t. diag(Z) = 0 (3)

where ∥ · ∥F is the Frobenius norm.
LS3C embeds samples into a low-dimensional space and

simultaneously finds the sparse code in this space. Let P ∈

ℜ
t×m be the projection matrix that projects the training samples

from the original high-dimensional feature space ℜ
m into a latent

output space of dimensionality t . By minimizing the following cost
function

[P∗, Z∗
] = min

P,Z
ȷ(P, Z, X)

s.t. PPT
= I, diag(Z) = 0,

(4)
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where

ȷ(P, Z, X) = ∥Z∥1 + γ1∥PX − PXZ∥
2
F + γ2∥X − PTPX∥

2
F .

The goal of the first two terms of ȷ is to insure sparsity and
reconstruction of data in the reduced space. The last term, which is
a PCA-like regularization term, ensures that the projection can hold
the main energy of data. γ1 and γ2 are non-negative constants that
control reconstruction and PCA-like regularization, respectively. In
LS3C, the rows of P are required to be orthogonal. Then the above
formulation can be written as

[P∗, Z∗
] = min

P,C
ȷ(P, Z, X)

s.t. PPT
= I, ZT1 = 1, diag(Z) = 0

(5)

where ZT1 = 1 is the affine constraint which is used to deal
with the data that lie on a union of affine rather than linear
subspace. Although the sparsity structure is preserved in LS3C, the
similarity structuremay be lost. The similarity structure of the data
is as important as the sparsity property for discriminant analysis
and subspace clustering, which is verified by the subsequent
experimental results.

3. Orthogonal Self-guided Similarity Preserving Projections
(OSSPP)

In this section, we introduce our orthogonal self-guided
similarity preserving projection (OSSPP) method which can be
used to perform DR and subspace clustering. Unlike previous DR
methods that firstly encode the similarity structure information
of data as graph relationship and then enforce the projected data
to respect the graph structure, OSSPP uses the reconstruction
coefficients of the projected data to encode the similarity structure
information and simultaneously requires the projected data to
respect the similarity structure during the procedure of DR. In
this way, these two tasks can be mutually improved so that we
can obtain the most suitable feature representation and accurate
similarity structure of data. A natural assumption is that if Z can
capture the similarity, then any two projected data points PT xi and
PT xj that are close in the intrinsic geometry of the data distribution
have a big weight Zij. A reasonable criterion for choosing a ‘‘good’’
map is tominimize the objective function

n
i
n

j ∥PT xi−PT xj∥2Zij.
It will ensure that PT xi and PT xj are close in the projected low-
dimensional subspace. Based on the above insights,we propose the
following objective function for OSSPP.

[P∗, Z∗
] = min

P,Z
z(P, Z) (6)

s.t. PTP = I, diag(Z) = 0, Z ≥ 0, ∀i

where

z(P, Z) = ∥PTX − PTXZ∥
2
F + α∥X − PPTX∥

2
F

+ β

n
i=1

n
j=1

∥PT xi − PT xj∥2Zij

where reconstruction coefficient matrix Z is required to be non-
negative so that it can be directly used as graph weights. We do
not impose the affine constraint on the reconstruction coefficient
matrix so that it can provide more freedom to well capture the
similarity structure of data. The last term in function z is the
similarity preserving regularization term which aims to require
the projected data to respect the similarity structure during the
procedure of DR. The whole learning processing is driven by the
philosophy that the optimal feature representation and intrinsic
structure of data jointly constitute a harmonic system, where the
optimal feature representation is finally invariant with respect to
the intrinsic structure on the similarity graph.
3.1. Optimization

In this section, we propose an iterative update rule to solve
problem (6) of OSSPP. Specifically, the first step of the optimization
algorithm solves P by fixing Z and the second step solves Z by
fixing P .

Solve P by fixing Z:
If Z is fixed, the optimization problem defined in (6) can be

written as

P∗
= argmin

P
∥PTX − PTXZ∥

2
F

+ α∥X − PPTX∥
2
F + βTr(PTXLXTP)

(7)

s.t. PTP = I

where L = D−Z is graph Laplacian andD is a diagonal matrix with
Djj =


k Zjk. Tr(·) is the trace operator of matrix.

Considering the constraint PTP = I , we can further transform
(7) into

P∗
= argmin

P
Tr(PT (X − XZ)(X − XZ)TP)

+ αTr(XTX − PTXXTP) + βTr(PTXLXTP). (8)

Let (X − XZ)(X − XZ)T = M , then (8) can be written as

P∗
= argmin

P
Tr(PT (M − αXXT

+ βXLXT )P) (9)

s.t. PTP = I.

The solution of (9) can be obtained by solving the minimum
eigenvalues problem:

(M − αXXT
+ βXLXT )pi = λpi. (10)

Let P = [p1, . . . , pd] be the solution of (10). Column vectors
pis(i = 1, . . . , d) correspond to the eigenvectors corresponding to
the first d smallest eigenvalues.

Solve Z by fixing P:
If P is fixed, the optimization problem defined in (6) can be

written as

min
Z

∥PTX − PTXZ∥
2
F + β

n
i=1

n
j=1

∥PT xi − PT xj∥2Zij (11)

s.t. diag(Z) = 0, Z ≥ 0.

(11) can be written as

min
Z

∥H − HZ∥
2
F + βTr(Θ(R ⊙ Z)) (12)

s.t. diag(Z) = 0, Z ≥ 0, ∀i

where H = PTX = [h1, . . . , hn] ∈ ℜ
d×n, Rij = ∥PT xi − PT xj∥2(R =

[r1, . . . , rn] ∈ ℜ
n×n) and Θ ∈ ℜ

n×n is a matrix with all elements
as 1. ⊙ is the Hadamard operation. The optimization problem
in (12) can be decomposed into n independent sub-problems for
each coding coefficient zi(i = 1, . . . , n) corresponding to hi(i =

1, . . . , n) and each sub-problem is aweighted non-negative sparse
coding problem.

min
zi

n
k=1

rki z
k
i + β∥hi − Hzi∥2 (13)

s.t. zi ≥ 0, z ii = 0, ∀i

where zki and rki are the kth elements of the vectors zi and ri,
respectively. Many algorithms, such as basis pursuit (SP) (Qiao
et al., 2010) and fast iterative shrinkage and thresholding (FISTA)
(Zhang et al., 2012) can be used to solve (13). Here, the altern-
ating directionmethod (ADM) (Yang, Chou, Zhang, Xu, &Yan, 2013;
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Yang&Zhang, 2011) is used to solve the optimizationproblem (13).
Thus, we convert (13) into the following problem

min
z≥0

∥z∥r,1 + β∥hi − H−iz∥2
2 (14)

where H−i represents the vectors {h1, . . . , hi−1, hi+1, . . . , hn} and
∥ · ∥r,1 is the weighted ℓ1 (semi-) norm defined as ∥z∥r,1 ,n

k=1 r
k
|zk|. Let z = f , we have

min
f≥0,z

∥f ∥r,1 + β∥hi − H−iz∥2
2, s.t. z = f . (15)

The augmented Lagrangian function of problem (15) is

J = arg min
f≥0,z

∥f ∥r,1 + β∥hi − H−iz∥2
2

+ ⟨y, z − f ⟩ +
µ

2
∥z − f ∥2

2 (16)

where y is the Lagrange multiplier and µ > 0 is the penalty
parameter. The variables are updated alternately by minimizing
the Lagrangian function, with other variables fixed. The iteration
stops when the convergence conditions are met. We provide
details of solving (16) in the following.

Step 1. Update z: Updating z by solving the following problem.

J = argmin
z

β∥hi − H−iz∥2
2 +

µ

2

z − f +
y
µ

2

2
(17)

which can be rewritten as

J = argmin
z

β∥hi − H−iz∥2
2 +

µ

2
∥z − b∥2

2 (18)

where b = f −
y
µ
. By setting the derivative ∂J

∂z = 0, we obtain

z =


β(H−i)

T (H−i) +
µ

2
I
−1 

β(H−i)
Thi +

µ

2
b


. (19)

Step 2. Update f : Updating f by solving the following problem.

J = argmin
f≥0

∥f ∥r,1 +
µ

2

z − f +
y
µ

2

2
(20)

which has the following closed form solution by the one-
dimensional shrinkage (or soft thresholding) formula:

f ki = max

0, shrink


zki +

yki
µ

,
rki
µ


. (21)

We obtain the solutions of (6) by updating P and Z iteratively.
The overall algorithm of OSSPP is described in detail in Algorithm
1.

Algorithm 1 : OSSPP
Input: Training samples matrix X; Parameters α, β;
Dimensionality of low-dimensional feature space d;
Initialization: Initializing Z as a similarity matrix by k nearest
neighbor graph;
while not converged do

1. Update P by solving (9)
2. Update Z by solving (12)

end while
Output: Projections P and reconstruction coefficient matrix Z

3.2. Sparse graph construction

Once the sparse reconstruction coefficient matrix Z is obtained,
we can construct an undirected graphG = (V , E) associatedwith a
weightmatrixW = {wij}, where V = {vi}

n
i=1 represents the vertex

set and each vertex corresponding to a sample xi. E = {eij} is the set
of edge and each edge eij associating nodes vi and vj with a weight
wij. The next problem is how to define the graph weight matrixW
when the vertex set V is given.

The non-negative weighted sparse coding in OSSPP can
guarantee that each sample is associated with only a few samples
and thus the graph derived from Z is naturally sparse. Since each
sample can be represented by the other samples, a column vector
zi(i = 1, . . . , n) of Z naturally characterizes the other samples
contribution in reconstructing of xi. Such information is helpful
to recover the clustering structure among samples. Thus we can
directly define the graph weight matrixW as

W = (Z + ZT )/2. (22)

3.3. Different from NNLRS (Zhuang et al., 2012)

In our OSSPP method, we use sparse reconstruction coefficient
matrix Z as graph to perform semi-supervised subspace clustering.
To our best knowledge, non-negative low-rank and sparse graph
(NNLRS) is the originally designed for the semi-supervised clus-
tering problem by using the low-rank and sparse reconstruction
coefficient matrix. The objective function of NNLRS is

min
Z,E

∥Z∥∗ + β∥Z∥1 + λ∥E∥2,1 (23)

s.t. X = AZ + E, Z ≥ 0

where ∥Z∥∗ is the nuclear norm (i.e., the sum of the singular
values). Once obtaining the optimal Z∗, column vectors of Z∗ are
normalized by z∗

i = z∗

i /∥zi∥
∗

2 and the elements in each column
vector are pruned by a predefined threshold θ , namely,

z∗

ij =


z∗

ij , if z∗

ij ≥ θ

0, otherwise. (24)

Although we also use the reconstruction coefficient matrix
to perform the semi-supervised clustering, our OSSPP is quite
different from NNLRS in the following two aspects:

(1) In NNLRS, the reconstruction coefficient matrix is defined
in the original feature space, which is unnecessary to be best
for characterizing the similarity of sample pairs because some
noisy features may exist in such original feature representation. In
contrast, our OSSPP constructs the graph in the derived optimal
low-dimensional feature space, which better characterizes the
similarity than the graph built directly in the original feature space.

(2) For NNLRS, in order to obtain the optimal graph, we need to
prune the learned affinitymatrix, i.e., some elements of the affinity
matrix should be set to 0 by a given threshold value. However, how
to estimate the optimal threshold value is data set dependent. In
our OSSPP, we directly use the reconstruction coefficient matrix as
the graph to conduct semi-supervised subspace clusteringwithout
any pruning operation since the learned reconstruction coefficient
is optimal.

4. Experiments and analysis

In this section, we apply OSSPP for dimensionality reduction
and subspace clustering, along with showing our experimental
results. Let (P∗, Z∗) be the solution of (6), thenwe use the obtained
P∗ and Z∗ to perform dimensionality reduction and subspace
clustering, respectively. All algorithms are implemented viaMatlab
2010b.

4.1. Experiment settings

Our experiments are conducted on four public data sets: YaleB
face image data set (Zhang & Yang, 2014), CMU PIE (PIE) face image
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Table 1
Classification error rates of different algorithms with NN classifier under different number of training samples. The bold numbers are the best results (both mean error rate
and optimal dimensionality).

Data set PCA LPP NPE SPP LRPP LS3C OSSPP

USPS (10) 27.09 ± 1.73 (49) 27.00 ± 1.86 (20) 26.07 ± 2.30 (20) 19.30 ± 1.28 (47) 22.20 ± 1.43 (65) 17.50 ± 1.46 (48) 15.59 ± 1.36 (48)
USPS (20) 21.25 ± 1.78 (46) 19.60 ± 0.71 (26) 17.86 ± 2.05 (20) 13.22 ± 0.78 (39) 14.40 ± 1.53 (70) 12.67 ± 1.83 (44) 10.60 ± 0.67 (47)
USPS (30) 17.95 ± 0.78 (50) 16.13 ± 0.88 (32) 14.27 ± 0.68 (40) 11.27 ± 0.54 (38) 10.62 ± 1.68 (65) 10.10 ± 1.54 (46) 8.76 ± 0.66 (48)
COIL20 (3) 39.70 ± 2.19 (48) – – 22.67 ± 2.07 (20) 28.50 ± 2.00 (85) 20.28 ± 1.84 (76) 20.68 ± 2.77 (83)
COIL20 (5) 33.61 ± 1.69 (48) 38.62 ± 3.96 (24) 40.52 ± 1.93 (35) 15.16 ± 1.83 (30) 22.56 ± 1.75 (50) 17.34 ± 1.69 (30) 15.30 ± 1.96 (30)
COIL20 (7) 28.01 ± 1.78 (44) 25.52 ± 1.82 (37) 24.07 ± 2.19 (54) 12.23 ± 1.45 (58) 13.32 ± 1.78 (45) 12.50 ± 1.45 (43) 11.89 ± 2.06 (28)
YaleB (20) 35.42 ± 1.59 (318) 17.19 ± 0.34 (61) 16.65 ± 0.96 (61) 16.08 ± 0.68 (61) 18.20 ± 1.69 (55) 15.30 ± 1.11 (39) 13.89 ± 1.12 (37)
YaleB (30) 26.75 ± 1.56 (325) 14.44 ± 0.94 (61) 14.21 ± 0.93 (61) 12.51 ± 0.92 (61) 13.30 ± 1.80 (50) 11.39 ± 1.76 (36) 9.59 ± 2.01 (30)
YaleB (40) 21.42 ± 1.14 (450) 13.33 ± 0.81 (61) 12.56 ± 0.89 (61) 11.59 ± 1.08 (61) 10.45 ± 2.01 (30) 10.32 ± 1.25 (33) 8.86 ± 0.95 (30)
PIE (15) 30.52 ± 0.91 (410) 8.32 ± 0.74 (68) 5.83 ± 0.75 (63) 4.91 ± 0.43 (68) 3.86 ± 1.11 (65) 3.58 ± 0.82 (58) 3.06 ± 0.31 (58)
PIE (20) 25.45 ± 1.17 (290) 6.31 ± 0.65 (68) 4.03 ± 0.73 (55) 3.52 ± 0.31 (53) 3.30 ± 0.82 (60) 3.32 ± 0.67 (57) 3.02 ± 0.34 (60)
PIE (25) 22.73 ± 1.07 (280) 4.93 ± 0.59 (68) 3.34 ± 0.52 (60) 3.00 ± 0.46 (68) 3.15 ± 0.75 (65) 2.93 ± 0.64 (58) 2.54 ± 0.42 (60)
data set (Zhang & Yang, 2014), COIL-20 object image data set (Lai,
Wong, Jin, Yang, & Xu, 2012) and USPS digit image data set (Nie,
Wang, & Huang, 2014; Zheng, Bu, Chen, & Wang, 2011).

The YaleB data set: This data set has 38 individuals, each
subject having around 64 near frontal images under different
illuminations. The images are cropped and then resized to 32× 32
pixels.

The PIE data set: In this experiment, we choose the face images
from the frontal pose (C27) and each subject has around 49 images
from varying illuminations and facial expressions. The images are
cropped and then resized to 64 × 64 pixels.

The COIL20 data set: This data set consists of images of 20
objects, and each object has 72 images captured from varying
angles at intervals of five degrees. All images in this data set are
resized to 32 × 32 pixels.

The USPS data set: This handwritten digit data set contains
9298 handwritten digit images and each image is cropped and then
resized to 16 × 16 pixels.

All images in these data sets use gray-level features to perform
classification. For the sake of computational efficiency, PCA is used
as a preprocessing step to preserve 98% energy of data for the USPS
data set, and 95% energy of data for the YaleB, COIL20 and PIE face
data sets.

4.2. Dimensionality reduction

We directly apply P∗ to map both of the training samples
and test samples into the desired low-dimensional subspace and
use the NN classifier (based on Euclidean distance) to perform
classification since there is no need of parameter tuning. For each
data set, we randomly select different training samples from per
subject for training and rest for testing. All experiments are run 10
times (unless otherwise stated) and then the mean classification
accuracy and standard deviation are reported.

We compare OSSPP with some popular unsupervised dimen-
sionality reduction methods such as PCA, LPP (Niyogi, 2014), NPE
(He et al., 2005), SPP (Qiao et al., 2010), low-rank preserving
projection (LRPP) (Lu et al., 2016) and LS3C (Patel et al., 2013).
(We use the learned projection matrix P to perform DR.) For
LPP, we select its model parameters, i.e., neighborhood size k
and kernel width t by searching them in a large range of can-
didates and report the best classification results. This strategy is
also used to determine the neighborhood size k in NPE. For SPP
and LS3C, we adopt the Thresholding Algorithm to solve the ℓ1-
minimization optimization problem. For OSSPP, we select parame-
ters α and β from {0.001, 0.004, 0.007, 0.01, 0.04, 0.07, 0.1, 0.4}
and {0.001, 0.002, 0.003, . . . , 0.009, 0.01}, respectively. Table 1
shows classification results on these data sets. Note that the num-
bers in parentheses (after each data set) are the number of training
samples selected from each class of data set and the numbers in
parentheses (below the experiments results) are the optimal di-
mensionalities after dimensionality reduction. From Table 1, we
have the following observations:

(1) PCA generally gets much worse performance than LPP, NPE,
SPP and OSSPP. Only on the COIL20 data set, its classification
performance is better than LPP and NPE when only three and
five images per class are selected for training. Moreover, we
find that when three images per class are selected for training
on the COIL20 data set, LPP and NPE do not work in such small
number of training samples.

(2) LPP andNPE generally outperform PCAwith lower dimensions.
This indicates that by preserving the local structure of the data,
the classification accuracy can be improved. That is, when NN
classifier (nearest neighbor search) is used, the local structure
seems to be important than global structure.

(3) OSSPP consistently outperforms all the compared methods
when we use the NN classifier. This suggests that the projec-
tion matrix learned by OSSPP contains more discriminative
information than that learned by compared methods, which
is benefit from the weighted non-negative sparse coding for
the solution of reconstruction coefficients matrix Z . In SPP,
the sparse reconstruction coefficientmatrix is firstly calculated
and then the dimensionality reduction is performed. Such two
independent steps cannot guarantee an overall optimum. In
contrast, our OSSPP performs the reconstruction coefficients
learning and dimensionality reduction in a single optimization
stepwhich can guarantee an overall optimum. Thus, OSSPP ob-
tains the best classification results.

(4) OSSPP outperforms LS3C in most of cases. The main reason
is that the learned sparse reconstruction coefficients are
influenced by the dimension reduction, and vice versa. The
learning process can hopefully boost the performance of
each task. Therefore, OSSPP obtains the better classification
performance. Although LS3C also uses the simultaneous
learning strategy, the low-dimensional embedding of data
is not explicitly required to preserve the similarity. So the
improvement of classification performance of LS3C is not very
obvious.

(5) We also note that when we select few samples as training
samples, the optimal dimensionality in general is higher. For
example, on the COIL20 data set, the value of dimension is 83 in
the first case, 50 higher than the dimension in the second case.
The reason may be that in the case of few training samples the
similarity is not preserved well.

(6) The low-rank preserving projection can well capture the
global subspaces structure of data and the sparsity preserving
projection can well capture the local similarity structure of
data (Zhuang et al., 2012). From the experiments in Table 1,
we can see that SPP and LRPP alternately beat each other on the
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Fig. 2. Classification error rates (%) of different algorithms with NN classifier versus dimensionalities on the (a) YaleB and (b) PIE face data sets. For the YaleB and PIE data
sets, we randomly select 30 and 20 samples per subject for training and use the remaining for testing, respectively.
Fig. 3. Parameters sensitivity and convergence: (a) and (b) show the performance of OSSPP vs. the parameters α and β , respectively. (c) shows the convergence curve of
OSSPP. We randomly select 20 images per subject for training and use the remaining for testing on the YaleB data set.
four data sets. Thus, we argue that the important of the global
subspace structure and local similarity structure of data is data
set dependent.
Classification error rates versus dimensionalities on the YaleB

and PIE data sets are shown in Fig. 2. We compare the
dimensionalities up to 50 and 60 for the YaleB and PIE data sets,
respectively. Again, OSSPP performs better than the othermethods
in almost of dimensionalities.

We examine the parameter sensitivity of OSSPP to classification
error rate. OSSPP requires two parameters α and β to be set in
advance. α is used to hold the main energy of data, while β is to
ensure the similarity preserving on the projection. Fig. 3(a) and
(b) show the parameters sensitivity of OSSPP. From Fig. 3(a) and
(b), we can see that the performance of OSSPP is robust to the
parameter α when α ≤ 10−2. Moreover, OSSPP is not sensitive to
the parameter β in the given wide range (see Fig. 3(b)). In practice,
we first fix α due to its more stronger robustness than β and then
select the optimal value of β from the given set.

Fig. 3(c) shows that the objective function value decreases very
fast. After only about 6–7 iterations, the objective value converges,
which suggests that our iterative update rule is very effective.

4.3. Semi-supervised subspace clustering

All semi-supervised subspace clustering experiments are con-
ducted on the YaleB (Lai, Xu, Chen, Yang, & Zhang, 2014; Zhang &
Yang, 2014), COIL20 (Lai et al., 2012, 2015) and PIE (Zhang & Yang,
2014) data sets. For the sake of computational efficiency, for the
YaleB and PIE data sets,we only use the first 20 persons in the YaleB
data set and first 40 persons in the PIE data set. For each data set,we
randomly select different samples per subject as labeled samples
and use the rest as unlabeled samples and all experiments are run
10 times and then themean classification error rate (%) is reported.
We carry out the semi-supervised clustering experiments on
the derived graph weight matrix W using the existing G-SSL
method, Gaussian field and harmonic function (GFHF) (Deng, Choi,
Jiang, Wang, & Wang, 2016; Fang, Xu, Li, Lai, & Wong, 2015; Zhu,
Ghahramani, & Lafferty, 2013).

We denote the sample set as X = [x1, . . . , xu, . . . , xn] ∈ ℜ
m×n,

where xi|ui=1 and xi|nu+1 are labeled andunlabeled data, respectively.
We define a binary label matrix Y ∈ ℜ

n×c (c is the total number of
classes) with Yij = 1 if xi has label yi = j(j = 1, 2, . . . , c); Yij = 0,
otherwise. GFHF estimates prediction labels matrix F ∈ ℜ

n×c by
minimizing the following objective function

min
F

n
i,j=1

∥Fi − Fj∥2Wij + λ∞

u
i=1

∥Fi − Yi∥
2 (25)

where Fi and Yi are the ith rows of F and Y , respectively, and λ∞ is
very large number such that

u
i=1 ∥Fi − Yi∥

2
= 0, or Fi = Yi, ∀i =

1, 2, . . . , u.
The graphs used in our experiments for comparison include:
k NN-graph: We set Gaussian kernel parameter σ as 1. There

are two configurations for constructing graphs, denoted as k NN5
and k NN8, where the numbers of nearest neighbors are set to 5
and 8, respectively.

LLE-graph (Roweis & Saul, 2010): We construct LLE-graphs,
denoted as LLE8 and LLE10, where the numbers of nearest
neighbors are 8 and 10, respectively.

ℓ1-graph: Following the lines of (Yan & Wang, 2009), we
construct the ℓ1-graph.

SPG-graph (He et al., 2011): In He et al. (2011), the SPG is
essentially a lasso problem.We construct the SPG-graph following
the lines of He et al. (2011).

LS3C-graph (Patel et al., 2013): The matrix Z∗ produced by (5)
is firstly converted into |Z∗

|, where |·| is absolute value of amatrix,
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Fig. 4. Visualization of graphweightmatrices of (a) SPG-graph, (b) OSSPP-graph on the YaleB data set, in whichwe randomly select 25 images per subject as labeled samples
and use the remaining as unlabeled samples.
Table 2
Classification error rates (%) of GFHF with different graphs under different number of the labeled samples. The bold numbers are the lowest error rates.

Data set kNN5 kNN8 LLE8 LLE10 ℓ1-graph SPG LS3C NNLRS OSSPP

YaleB (15) 45.84 50.83 36.80 37.84 41.68 12.17 12.20 12.28 12.38 (32)
YaleB (25) 41.73 44.62 30.05 30.05 32.29 8.26 9.31 8.89 7.35 (38)
YaleB (35) 35.76 37.37 25.27 23.84 25.09 8.18 8.00 7.74 5.87 (36)
YaleB (45) 29.83 33.15 20.99 17.13 16.02 6.35 3.86 2.77 2.48 (36)
COIL20 (5) 9.03 13.21 9.02 11.87 5.67 20.97 18.13 6.28 4.56 (29)
COIL20 (10) 3.87 8.47 4.11 4.83 3.39 10.48 8.14 4.92 1.93 (34)
COIL20 (15) 3.42 6.05 2.89 3.59 2.46 6.58 6.40 2.56 0.88 (28)
COIL20 (20) 2.11 5.09 1.45 1.63 2.38 3.85 3.17 1.45 0.37 (28)
PIE (5) 36.54 43.99 39.04 41.21 29.08 12.98 27.71 13.58 13.49 (61)
PIE (10) 27.49 35.07 26.84 28.96 19.91 9.31 13.87 8.89 9.77 (62)
PIE (15) 19.16 26.31 19.15 20.56 14.30 5.16 5.31 5.72 5.05 (63)
PIE (20) 18.67 25.41 16.16 16.50 12.96 5.09 4.49 4.54 4.33 (64)
and then |Z∗
| is used to construct the graph weight matrix W

according to (14).
NNLRS-graph (Zhuang et al., 2012): In Zhuang et al. (2012),

the NNLRS is essentially the problem of solving a constraint low-
rankness and sparsity minimization objective. We construct the
NNLRS-graph following the lines of Zhuang et al. (2012).

OSSPP-graph: Reconstruction coefficients matrix Z in (7) is
used to construct graph weight matrixW according to (22).

Since the problem of SPG is similar to that of OSSPP (two
non-negative sparse graph learning methods). Thus, we give the
visualization of graph weight matrices of SPG and OSSPP in Fig. 4.
From this figure, two observations can be made: (1) The edges
in OSSPP-graph are sparse than SPG-graph; (2) There is much
less inter-subject adjacency structure in OSSPP-graph than in SPG-
graph, which means the OSSPP-graph delivers strong discriminant
information and thus is more effective for label propagation than
SPG-graph.

The mean classification error rates of different graphs are
shown in Table 2. Note that numbers in parentheses (after
each data set) are the number of labeled samples selected from
each class of data set and numbers in parentheses (after the
experiments results of OSSPP) are the optimal dimensionalities
after dimensionality reduction. From this table, the following
conclusions can be drawn:

(1) In most cases, OSSPP consistently achieves the lowest mean
classification error rates in comparison with other graphs. In many
cases, the improvements are rather obvious. This indicates that the
graphproduced byOSSPP ismore informative and suitable for label
propagation. When the number of labeled samples is small, the
performance of OSSPP slightly decreases on the YaleB and PIE data
sets.
(2) The goals of LS3C and NNLRS are somewhat similar to
OSSPP in subspace clustering. However, in LS3C, the projected
data are not required to respect the similarity structure during the
procedure of dimensionality reduction so that the reconstruction
coefficient matrix does not effectively capture the similarity of
data. Thus the label information cannot be accurately propagated.
In NNLRS, the reconstruction coefficient matrix is defined in the
original high-dimensional feature space which is also unnecessary
to be best for characterizing the similarity of data. OSSPP addresses
these problems by solving the objective (6) and thus the OSSPP
outperforms them in most cases.

5. Conclusion

This paper proposes a novel dimensionality reduction method,
called orthogonal self-guided similarity preserving projection (OS-
SPP) for dimensionality reduction and semi-supervised subspace
clustering. The core idea of OSSPP is that OSSPP simultaneously ob-
tains the feature representation and intrinsic similarity structure
of data. In this way, these two tasks can be mutually improved and
we eventually can determine themost suitable feature representa-
tion and capture the accurate similarity structure. Extensive exper-
iments on both DR and semi-supervised subspace clustering show
the effectiveness of OSSPP.
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